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Outline

 Why a higher harmonic cavity?
 APS-U nominal fill modes
 Modeling methods
 Bunch duration and shapes
 Touschek lifetime
 Intrabeam scattering
 Operational details

– Effects of bunch population variation
– Effects of loss of a bunch
– Filling from zero

 Hybrid mode and other options
 Conclusion and plans
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Why a higher-harmonic cavity?

 New lattice has ultra-low emittance
– 67 pm compared to 3100 pm today

 Users still want to perform timing experiments
– I.e., we need intense single bunches

 Beam scattering phenomena become much more severe
– Intra-beam scattering (IBS)

• Multiple electron-electron scattering within a bunch
• Causes emittance and energy spread growth

– Touschek scattering
• Hard electron-electron scattering within a bunch
• Leads to electron loss and reduced beam lifetime

 Harmonic cavity can stretch the bunch longitudinally
– Reduces electron density and collision rates
– Improves emittance, energy spread, and lifetime



M. Borland et al., Tracking simulations of HHC in APS-U, June 3, 2015 4

Planned APS-U fill and operating modes

 Minimum beam current of 200 mA
 Two fill patterns being advertised

– 324-bunch uniform
• Limit of present kicker technology
• Desirable for long lifetime and possible flat beam operation

– 48-bunch uniform
• Desirable for timing experiments
• Round beam operation required for lifetime reasons
• Touschek lifetime and IBS particular an issue for this pattern

 Possible hybrid or non-uniform modes under study
– Use of HHC impacts these modes in interesting ways

 Swap-out injection
– Single bunch swapping only
– 5-15 s interval
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Expected effect of HHC in APS MBA Lattice

Optimized 4th 
harmonic HHC
increases rms 
bunch duration from
12.3 ps to 50 ps 

Expect a ~4-fold
increase in 
Touschek lifetime 
and ~4-fold decrease
in IBS effects 

Computations from TAPAs, version 1.48, tinyurl.com/borlandTAPAs
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Modeling methods

 Used parallel elegant1 for tracking
– Latest versions (27.0+) have significantly improved performance for bunched beams
– Domain decomposition shares bunches across processors for best performance with 

multi-particle bunches

 To make tracking faster and concentrate on relevant physics
– ILMATRIX element for the ring itself

• Can include chromatic and amplitude detuning (not relevant here)
• Can include momentum compaction up to third order

– SREFFECTS for lumped synchrotron radiation

 Turn-by-turn, bunch-by-bunch diagnostics included as needed
– Phase space coordinates 
– Beam moments
– Histograms
– Beam- and generator-induced voltages, phases in cavities
– Rf feedback system data

1: M. Borland, LS287, 2000; Y. Wang and M. Borland, AIP Conf. Proc. 877, 214 (2006).



M. Borland et al., Tracking simulations of HHC in APS-U, June 3, 2015 7

Collective effects and rf modeling

 RFMODE: Beam- and generator-driven rf cavity mode
– Beam-induced part

• Uses loss factor plus phasor addition/rotation/damping
• Implicitly includes the compressive single-turn wake corresponding to the mode

– Can be turned off if desired

– Generator-driven part
• PID feedback seeks to maintain specified net cavity voltage and phase1

• User provides filter coefficients for the controllers

– Can add other cavity longitudinal and transverse modes if desired (not in present work)

 ZLONGIT2: Longitudinal short-range impedance 
– Present instance includes

• Short range wake from rf cavity HOMs but excluding fundamental
• Geometric impedance of vacuum chamber computed with GdfidL3 and ECHO2D
• Resistive wall impedance computed analytically

 Part of elegant since 1994, but recently
– Improved parallel performance for multi-bunch beams
– Added rf feedback

1T. Berenc and M. Borland, IPAC15, MOPMA006.
2Data from R. Lindberg, A. Blednykh, and Y.-C. Chae.
3www.gdfidl.de
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RF Feedback
RF feedback:
 Regulates the RF cavity fields
 Rejects disturbances including beam loading
 Changes the impedance that the beam sees

• Note:  in Bunch Lengthening System, main RF 
contributes to Robinson damping while the 
harmonic RF cavity contributes to growth

Example:  Direct RF Feedback
§ Simple Proportional Gain

=> Controller =       ,      = Loop Gain at 
resonance R
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Longitudinal phase space without HHC

200 mA in 48 bunches

200 mA in 324 bunches

 Results similar with 104-106 
simulation particles/bunch

 Microwave instability threshold is at 
~0.5 mA/bunch

– In APS, threshold is ~7 
mA/bunch
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Scan of HHC detuning

 As expected, bunch lengthens as HHC cavity is tuned toward resonance
 “Beneficial” effect of MWI visible for 48-bunch mode
 As bunch lengthens with decreased detuning, MWI is suppressed and energy 

spread drops
 Expected optimum bunch length from theory (without impedance) is 50 ps with 

~16.5 kHz detuning
– 324-bunch results agree with this expectation
– Seems we can go beyond that...



M. Borland et al., Tracking simulations of HHC in APS-U, June 3, 2015 11

Longitudinal density averaged over 2000 turns (48B)
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Longitudinal density is noisy, but rms is stable (48B)

13.50 kHz 15.50 kHz

 Results on previous slide average out 
the effect of MWI

 Turn-by-turn variation seems mostly 
MWI-driven

– Present with cavity detuned by 
+136kHz (f

rev
/2) as well

 Not related to rf feedback
 How much do users care about this?

15.50 kHz
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Touschek lifetime analysis

 Touschek lifetime is one reason  for introducing HHC
 Normally, to compute it, just use rms bunch duration
 Using tracking results improves fidelity of calculations

– Tracking results give bunch distribution turn-by-turn
– Slice analysis of bunch on each pass gives current density and slice energy spread

• Slice energy spread includes MWI

– Program touschekLifetime allows slice-based Touschek lifetime calculation1

 Also included IBS effect on emittance and energy spread
– Computations used ibsEmittance2

 In addition, need local momentum acceptance3

– Used 100 error ensembles with lattice correction4 as input to tracking

 Computations provide a Touschek lifetime value for each error ensemble, 
averaged over many bunch samples

 Method not fully self-consistent, but allows combining effects of intrabeam 
scattering, HHC, and microwave instability

1: A. Xiao and M. Borland, PRSTAB 13 074201 (2010); A. Xiao and M. Borland, IPAC15, MOPMA012.
2: A. Xiao et al.; M. Borland et al., PAC03, 3461.
3: C. Steier et al., Phys. Rev. E 65-056507 (2002); M. Belgroune et al., PAC 2003, 896. 
4: V. Sajaev, IPAC15, MOPMA010.
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Touschek Lifetime Improvements due to HHC1

 In both cases, have 200 mA, Q
L
=600k

 For 48 bunches, get factor of ~2 for 13.5 kHz detuning
– Bunch is already significantly lengthened by the ring impedance
– Do not reach the desired 7.5 h value
– Has implications for shielding, TBD

 For 324 bunches, get factor of ~3 for 13.5 kHz detuning
– Total lifetime (including gas scattering) expected to meet goal for round beams
– Flat beams (2x higher brightness) more challenging

48 bunches
324 bunches

Symbols show 10th 
(lower) and 50th (upper)
percentile points
in lifetime distributions

1: A. Xiao and M. Borland, IPAC15, MOPMA012.
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Suppression of IBS

 Approximate results with gaussian beams show the beneficial effect of HHC
– Uses program ibsEmittance1

 Improvement is dramatic for flat beams and high charge
 Not negligible even for 324 bunch flat beams

Flat beams (κ=0.1) Round beams (κ≈1)

324 bunches 48 bunches 324 bunches 48 bunches

1: A. Xiao et al.; M. Borland et al., PAC03, 3461.



16

Tracking-based HHC Simulation with IBS

 Previous results are only approximate, using gaussian longitudinal 
distribution

 Would like to perform self-consistent modeling of five effects
– Intrabeam scattering
– Longitudinal impedance
– Higher harmonic cavity
– Main rf cavity with feedback
– Element-by-element synchrotron radiation

 This will give vertical and horizontal emittance consistent with 
complex longitudinal distribution that results from IBS, cavities, and 
impedance

 Effect of IBS and MWI on the energy spread and bunch shape 
simultaneously included
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Problems

 Impedance modeling requires >30k particles/bunch 
 Must use slice-based IBS algorithm1 to be accurate

– ~20 slices needed to reproduce a non-gaussian bunch shape
– Need ~100 k particles/bunch to ensure reasonable slice populations

 Cavity/feedback modeling nominally requires all N bunches
– Different bunch patterns give different V(t) envelopes for 

cavities
 With so many particles element-by-element tracking is very 

time-intensive
 Simulations would take many months to run

1: A. Xiao and M. Borland, IPAC15, MOPMA012.
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Solution1

 Track only one of N bunches
– HHC and main cavity must be fooled

into thinking N bunches are present
– Other effects are all accurately

represented with a single bunch
– Speed-up: ~48x for N=48

 Perform complex IBS integrals in parallel
– Integrals over lattice functions

for each beam slice
– Parallelized the evaluation of these

integrals
– Speed-up: ~10x for 500 cores

1: M. Borland et al., IPAC15, MOPMA009.
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Tracking Simulation with IBS, HHC, Impedance, ...

 Performed test runs 
simulating damping of a 
injected bunch

 Coupling is very low
 As vertical emittance 

damps to very small value, 
horizontal emittance 
increases due to IBS

 Effect is stronger with HHC 
detuned to 136 kHz

 Production runs pending 
availability of computer 
time

– Need about 60 hours on 
480 cores for one run
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Operational Issues

 So far, we’ve looked at the performance of the HHC in ideal conditions
– Uniformly-spaced fills
– Uniform bunch population

 Operational issues complicate matters
– Filling from zero produces transient irregular fill patterns
– Not all bunches will be filled with exactly the same current
– Bunches may be accidentally kicked out
– Energy loss per turn varies in time as gaps are changed

 All of these effects have been simulated
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Simulations of 48-Bunch Filling from Zero

 Wanted to assess potential for beam loss due to voltage, phase variation
– Sequential fill: 0, 27, 54, …, 1269
– Balanced fill: 0, 648, 324, 972, …

 Simulations allow 37 ms (10,000 turns) between injections, sufficient for 
damping and feedback to settle

 Although transient voltage levels are similar, balanced fill shows smoother 
voltage across bunches

Sequential fill order Balanced fill order
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Simulations of 48-Bunch Filling from Zero

 Timing shifts are much 
larger for the sequential fill 
order

 Timing shifts are smaller 
when HHC is detuned to 
136 kHz

 Losses are low in all cases
 Losses are larger for 

sequential fill order
 Tuning HHC to 13.5 kHz 

improves capture 
efficiency
– Seems intuitive since 

bucket is bigger
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Effect of bunch population variation

 Bunches will be swapped out when they fall to 90% of initial charge
 Expect to have randomly-ordered bunches with uniform distribution of charge 

between 105% and 95% of the average value
 Simulated 10 random 48-bunch fills of this type
 Modest variation among bunches within a fill and over time
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Effect of lost bunch (48 bunches, minus 1)

 Swap-out involves kicking out one bunch and immediately injecting replacement
– May fail sometimes to inject the replacement

 Simulated kicking out of last bunch in 48-bunch fill, then return to equilibrium
– No particle loss observed even with ±2% momentum acceptance

 Real part of beam-induced field in main cavity has ~160-230 kV sawtooth
– Forces bunches to shift phase
– Changes effect of HHC

13.5 kHz



M. Borland et al., Tracking simulations of HHC in APS-U, June 3, 2015 25

Effect of lost bunch (48 bunches, minus 1)

 Variation in the bunch centroid is a significant fraction of the bunch length
– Is this a problem for users?

 Bunch length variation is under 10%, presumably tolerable
 Could provide gate to users to indicate when a bunch is missing
 ~7 degree phase shift at main rf system frequency

– May want to adjust injector phase to hit the optimum point in the bucket
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Hybrid Modes

 Looked at three possible hybrid modes with equal bunches
– H1: 47 bunches at 12 bucket spacing with ±1.05 μs gap around single bunch
– H2: 47 bunches at 18 bucket spacing with ±0.66 μs gap around single bunch
– H3: 45 bunches at 27 bucket spacing with ±0.15 μs gap around single bunch

 As expected, significant non-uniformity in bunch properties
– H1, H2 do not approach ~75 ps bunch duration seen in uniform 48-bunch mode
– Difficult lifetime situation made significantly worse
– Arrival time variation also large for H1, H2
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 Main cavity voltage shows a significant modulation
 Present rf feedback system is not fast enough to counteract this

– Response time is about 20 ms

 Studying a faster system that should better compensate
– H1 and H2 will be very challenging

 Should be significantly easier to improve H3 mode

Hybrid mode
Mode 1, 13.5kHz densities averaged over 2000 turns
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RF Feedback:  Other Types of Feedback

10dB 
compensation of 
+/-4 harmonics

 Polar (Amplitude / Phase) or Cartesian (in-phase / quadrature):  can be narrowband or wideband
 Comb Filters:  reduce impedance & beam-loading at revolution harmonics & synchrotron sidebands
 Feed-Forward:  feed wall-current monitor to generator to cancel the beam-current directly

Example of Transient Beam-Loading Compensation for Hybrid Fill
(can be achieved with combination of above)
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Another possibility: 24 doublets

 Could fill 24 pairs of buckets with uniform separation between pairs
– Pair forms a “super-bunch” 11.4 ns in duration
– 142 ns gap between pairs

 This actually works pretty well
– 13.5kHz: 70-76 ps rms bunch duration
– 15.5kHz: 63-67 ps rms bunch duration

15.5kHz 13.5kHz
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Explore MBA and HHC Physics

Screenshots from TAPAs, version 1.48, tinyurl.com/borlandTAPAs



M. Borland et al., Tracking simulations of HHC in APS-U, June 3, 2015 31

Explore MBA and HHC Physics

Screenshots from TAPAs, version 1.48, tinyurl.com/borlandTAPAs
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Conclusions

 Harmonic cavity is effective in increasing lifetime and reducing emittance
 The necessity for a bunch-lengthening cavity complicates matters for timing 

modes
– 48-bunch, 200 mA mode seems workable
– Exploring hybrid modes, other possibilities

 Extensive simulations show few issues with
– 48-uniform, 324-uniform, 1+45, and 2x24 fill modes
– Accidentally kicking out a bunch
– ~10% variation in bunch-to-bunch charge
– Rapid ID gap variation
– Filling from zero

 Beam-phase detectors seem advisable to keep booster and ring synchronized
 May need more sophisticated system to provide users with data on bunch timing
 On-going work includes

– Self-consistent production simulations combining IBS, HHC, and impedance
– Use of faster rf feedback with goal of improving results for hybrid modes
– Modeling of multi-bunch instabilities with additional cavity HOMs, longitudinal 

feedback
– Add transverse impedance and verify single bunch stability limits
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Backup Slides
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Hybrid 7BA Lattice Compared to APS Now

H7BA lattice based on L. Farvacque et al., IPAC13, 79.
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Present APS fill and operating modes

 24-bunch uniform, 100 mA
– 75% of time
– 6.5 MHz bunch rate
– 120s top-up

 324-bunch uniform, 100 mA
– 15% of time
– 88 MHz bunch rate
– 12 hour “fill-on-fill” interval

 Hybrid (camshaft), 100 mA
– 10% of time
– One 16 mA bunch
– 60-s top-up

16 mA

84 mA in eight 
septuplets (8x7)

1.594 s gaps

0.5 s train

Diagram courtesy L. Emery, APS.
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Effect of variation in energy loss per turn

 As ID gaps are varied, the energy loss per turn varies
– Could vary by a significant fraction of the 2.27 MeV/turn nominal loss
– Presently, without pre-conditioning, APS rf systems trip when closing all ID gaps rapidly

 Feedback will maintain cavity voltage and phase relative to the source, but
– Beam will move to a different rf phase
– Incoming bunches may suffer losses from energy oscillations due to phase offsets
– Bunch duration will change

 Simulated unrealistically rapid variation
of energy loss per turn by 0.6 MeV

– Took 10 equal steps at 10k turn intervals
– Ramped loss between levels over

1000 turns
– Included effect on damping times

and energy spread
– Kept (slow) tuners for main cavities and

HHC fixed
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Effect of variation in energy loss per turn
 Increased energy loss moves beam

higher on the main rf waveform
 Reduced slope of main rf

means longer bunches
– Good news for beam lifetime

 For 13.5 kHz bunches begin to take
double-humped appearance

 Shifting phase complicates injection
– Booster may need to track SR bucket

13.5kHz 15.5kHz
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